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Abstract. Some variational methods are considered in which the trial functions used are 
not required to satisfy prescribed boundary conditions. Applications of these methods are 
made to a two-body system interacting via a hard-core potential. 

1. Introduction 

I t  is a widely held belief that the trial functions used in a variational calculation should 
exactly satisfy (by construction) the boundary conditions of the particular problem. In 
fact this is not so, and there exist in the literature methods for handling a particular type 
of derivative boundary condition (Mikhlin 1964, Morse and Feshbach 1953) and various 
boundary conditions have been considered using complementary variational methods 
(Arthurs 1970, 1973, Anderson and Arthurs 1972 and references therein). 

It frequently happens that the most attractive coordinate system for describing a 
problem is not the most convenient for implementing the given boundary conditions. 
For example, in the nuclear three-body problem, a hyperspherical coordinate system is 
attractive for expressing the problem but this system does not lend itself conveniently to 
the construction ofvariational trial functions which incorporate the boundary conditions 
when a hard-core potential (eg the potential of Hamada and Johnston 1962) or a 
boundary condition model (BCM, Lomon and Feshbach 1968) is used to describe the 
underlying two-body interactions. 

In this paper we examine two possible methods for dealing with multiparticle 
problems when hard-core interactions are used. These methods are variational in 
nature, but the trial functions used are not required to explicitly satisfy the boundary 
conditions. 

The first method (I) is a simple generalization of the existing method which enables 
us to compare with a recently developed variational method (Yates 1974). In this case 
the hard-core interaction is considered in two ways, firstly as the limit of a BCM and then 
directly. 

The second method (11) is derived from first principles and, as far as the authors are 
aware, has not previously been applied to an eigenvalue problem. 

These methods are derived in & 2 and 3. In 0 4, method I is applied to the BCM for a 
two-boson system, while in 5 ,6  and 7, methods I and I1 are respectively applied to the 
Hamada-Johnston hard-core potential (HJ potential) for the same system. Finally some 
comparisons are given in 0 8. 
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Throughout the paper, the HJ potential used is the ' S o  potential of Hamada and 
Johnston (1962) with the strength parameter adjusted by a factor of 1.4 to produce a 
single bound state. 

2. Method1 

Consider a linear equation 

L Y = j  (2.1) 

As has been stated elsewhere (Delves 1973, Stakgold 1968), the functional 

F(994) = (9, L4) - (9, f) - (f, 4) 
is stationary about the true solutions of equation (2.1) and of 

L+q = j  

Here (9, 4) is some suitable inner product, the usual definition being 

(1, 4) = J 14 dt, 

the integration being performed over the region of interest. L+ is the Hermitian con- 
jugate operator of L and is explicitly defined in terms of the inner product by 

(9, L4) = (L+ il, 4). 
Likewise for the eigenvalue problem 

LY = EY 

the functional 

F(99 4) = (9, L4) - E(?, 4) 
is stationary about the true solution of equation (2.2). 

Now consider the eigenvalue problem 

LY = EY ( 2 . 3 ~ )  

subject to the boundary condition 

M Y  = 0. (2.3b) 

Using the ideas outlined above, the functional 

F(?, 4) = (9, L4) - E h  4) + B(97 M4)* (2.4) 

is stationary (in the sense of Stakgold 1968, p 357) about the true solution of equations 
(2.3) and their corresponding adjoints. Here is an arbitrary parameter and (v ,  4) and 
(q,4)B represent inner products over and on the boundary of the region of interest 
respectively. 
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Introducing, as usual, a complete set hi (which does not satisfy the given boundary 
conditions) gives suitable expansions for the trial functions 

N 

i =  1 

N 
Y t  = aihi. 

i =  1 

Substituting these expansions into functional (2.4) gives 

F ( q t , Y t )  = b + L a - E b + N a + / ? b + M a  

where a, b, N ,  L,  M are matrices with elements ai ,  b i ,  (hi, hj) ,  (hi, Lh,) and (hi, Mhj), 
respectively. The stationary value of this functional gives the matrix eigenvalue problem. 

(L+ /?M)a  = E,Na (2.5) 

where ET is a variational estimate of the eigenvalue. We note at this point that intuitively 
the parameter /? is some measure of how strongly the variational method feels the 
boundary condition. For instance, for small /? the effect of the boundary condition will 
be small whilst for large 8, the boundary condition will dominate. For inhomogeneous 
equations (2.1) it has been found that the method is relatively insensitive to the value of 
8 over a wide range. (This is a private communication with D Yates, the results shortly 
to be produced in thesis form in Yates (1974).) 

3. Method I1 

Here we consider the eigenvalue problem 

L Y  = EY (3.1) 
where L is a second-order linear differential operator, subject to the boundary condition 

Y = O  (3.2) 
over the same prescribed boundary B. Then, as is well known, the functional 

F(4) = ( 4 9  L 4 )  - E(4, 4)  (3.3) 

is stationary about the true solution of (3.1) provided that the inner product in (3.3) 
has been chosen to make the operator L formally Hermitian. This can be achieved by 
using the usual inner product and ensuring that the trial function 4 satisfies the prescribed 
boundary conditions. 

However, suppose we now relax the condition that 4 should satisfy the boundary 
condition. Then by adding a term to (3.3) we can produce a function which is stationary 
about the true solution of (3.1) without requiring that the trial functions satisfy (3.2). 
This functional is 

where (4, c $ ) ~  is some appropriate inner product defined over the boundary B and 
a 4 p n  is the normal derivative, n being the outward normal to the boundary. With the 
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usual definition of the inner product, this of course means that the operator L is no 
longer Hermitian since we have (by Green’s theorem) that 

The idea of adding boundary terms to a functional of the form of (3.3) has previously been 
considered within the framework of complementary variational principles (Arthurs 
1970,1973, Anderson and Arthurs 1972). 

With the usual choice of expansion functions, the functional (3.4) now becomes 
stationary if 

(L+M)a = ETNa 

where the notation is the same as in (2.5) except that now M is the matrix with elements 
(ahi/an,hj),.  Note that this method is not derivable from method I, since there the 
analogous operator M would be unity and thus M would have elements ( h i , h j ) B .  

4. Method I and the BCM 

We now demonstrate how the BCM fits into the framework developed in Q 2. We consider 
the binding energy of a two-boson system, the equations which describe this system being 

r > c  
d2 
dr2 

--u(r)+ V(r)u(r) = Eu(r), 
d 

-u(r) dr = M r ) ,  r = c. 
(4.1) 

If we use the notation of 4 2 then 

d2 
L = - - + V ( r )  dr2 

Suitable definitions for the required inner products are (Delves 1973) 

a 
( h i ,  h j )  = hihj dr 

C 

The resulting matrix equation which we solve is 

(L+PM)a  = E,Na. 

Having obtained the solution to this eigenvalue problem we premultiply by a’ to get 

(4.2) E, = (aTLa + /?aTMa)/aTNa. 
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We note that this expression is very similar to the normal Rayleigh-Ritz principle. If 
we define 

U, = U + €  

where E is the amount by which the variational estimate U, = Zr= aihi varies from the 
true solution U, then we can show that (see appendix, equation (A.2)): 

E T  = E + (1 + /?)O(E) + O(E'). 

Thus for general j? the variational principle gives an estimate ET which differs from the 
true value E by an amount which is first order in E. However, the special choice fl  = - 1 
gives 

E ,  = E+O(E2), 

H(P)  = L + P M  

ie a second-order estimate. We also note (see appendix, equation (A.3)) that the matrix 

is not in general symmetric, but again the choice j3 = - 1 results in a symmetric H. For 
the special case P = - 1, the resultant principle is identical to the existing method for 
handling a set of equations like (4.1) (Mikhlin 1964, Morse and Feshbach 1953). As a 
test of the variational principle we may restrict ourselves to the pure BCM (ie we do not 
consider an external potential in this section). Then we have 

r > c  d2 -- dr2u(r) = Eu(r), 

d 
-u(r) = h ( r ) ,  
dr 

r = c. 

It is easily seen that for negative values of 1 this system has a bound state with energy 
E = -12. For trial functions we used 

N 
u, = 1 airie-" 

i= 1 
(4.3) 

where a is a nonlinear parameter. Figure 1 shows the results for E ,  for the values of the 
parameters c and 1 considered. The value of a used was obtained by finding a range 
over which the rate of convergence was not markedly affected and choosing a suitable 
value of a from this range. It is immediately apparent that for all j? the energy estimates 
obtained from the variational method are converging to some value consistent with the 
true solution E = -0.25. However, it is also clear that the results for /I = - 1 converge 
much more rapidly than the results for other P values. This is merely a direct demonstra- 
tion of the result obtained earlier which predicted second-order convergence for P = - 1 
and first-order otherwise. Figure 2 shows results for the ratio AT obtained from the 
variational solution U, by 

4 = ( y)r=c. 
These results behave much as one would expect, the larger values of IBI reproducing the 
prescribed boundary conditions with a small number of terms. However, we note that 
the special value fi = - 1 has no effect in this case since from the appendix we know that 
AT converges to ,I to first order in E irrespective of the value of P. To emphasize these 
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Figwe 1. Binding energy E ,  against number of varia- 
tional terms N .  Parameters are a = 1.5, /r = -0.5, 
c = 0.7. Full curves: /3 = - 1 (with crosses), 1 (with 
open circles); broken curves: /3 = - 10 (with crosses), 
10 (with open circles); chain curve: /3 = - 100 (with 
crosses). 

Figme 2. i., = ((duJdr)/u,), against N .  Parameters 
as in figure 1. 

points further, figure 3 shows the results obtained for the differences lET - El and llT - i I  
as a function of N on a logarithmic scale. From an analysis of the convergence of simple 
problems one would expect there to be a linear relationship between these quantities and 
N (or at least asymptotically this should hold). Figure 3 clearly demonstrates that such a 
linear relationship holds. (The straight lines are merely a guide to the eye.) However, 
more important are the relative rates of convergence of the two quantities. For p = + 1, 
both are converging at approximately the same rate (since the lines are parallel) whereas 
for p = - 1, the rate for ET is approximately twice that for AT. These results merely 
reinforce our simple analysis of the error given in the appendix. 

5. A limiting case of method I and the BCM 

In 9 4, method I was applied to the pure BCM (ie no external potential). In this section we 
consider a hard-core potential as the limit of an external potential and the BCM acting 
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lo-’’ ’ 2 ’ 4 ’ 6 
8 IO 

N 

Figure 3. ( E ,  -El (full curve with crosses) and ll, - 11 (full curve with open circles) against 
N for: (a) ,!3 = 1 ; and (b) ,!3 = - 1 .  Other parameters as in figure 1 .  

at the core. Consider the boundary condition 

du 
--AM = 0, 
dr 

r = c. 

Then in limit 111 -+ 30, this reduces to the condition that 

U = 0, r = c. 

Thus a hard-core potential can be considered as the limiting case ofthe BCM. The detailed 
problem we consider here is that of a two-boson system interacting via the HJ potential. 
We first solved this problem in the traditional way (the trial functions satisfying the 
boundary condition at r = c explicitly) to enable us to quote the exact solution to four 
significant figures. We then relaxed the condition that the trial functions should satisfy 
the boundary condition and used the expansion (4.3) in method I for various values of A, 
fixing 

The results are shown in figure 4. Here we have plotted the converged value of ET 
(as a function of N )  for the various values of il considered. The results clearly show that 
the predicted binding energy is converging to the exact solution of the HJ potential. I t  
is interesting to note that whilst the energy of the pure BCM is tending to infinity 
( E  = -1.’) the combined system in fact feels the effect of the BCM less and less as i 
increases. Since large values of A are required, from the computational point of view, the 
method is possibly unstable, since the term I (Y, Y)B may tend to swamp any other term 
due to the finite precision arithmetic in the computer. 

= - 1 in order to obtain second-order convergence. 
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c / 
1.0 10.0 100.0 1000~0 DO 

h 
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Figure 4. Converged value of E ,  against 1 for the HJ potential considered as the limit of a 
BCM (U = 1.50). The broken line is the exact solution. 

6. Method II and the HJ potential 

In this section the method of @ 3 is applied to the HJ potential. For two bosons. the 
eigenvalue equation is 

d2u 
dr2 

-_ + V(r)u = Eu, r > c  

subject to the boundary conditions at the hard core 

U = 0, r = c. 

Thus in the notation of @ 3,  we have 

d2 
L --+V(r) 

dr2 

If we introduce a complete set hi, which does not satisfy (6.2), substitute into functional 
(3.4) and find the stationary value as usual, the matrix equation 

( L + M ) a  = ETNa 

arises, where M is the matrix given by 

M i j  = ( $ h j )  . 
r = c  

In appendix 2, it is explicitly shown that for a system defined by equations (6.1) and (6.2) 
the energy estimate which will result from this method is second-order in the error. 

In figure 5 ,  we have plotted the results obtained from using this method with the trial 
function given by (4.3). Also shown on this graph are the results from the traditional 
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7 8 10 
4 6 

N 

Figure 5. E ,  against N for the HJ potential (a = 1.75). Full curve: traditional method; 
broken curve: method 11. 

method (ie the boundary condition explicitly included in the trial function). It can be 
seen from the graphs that both sets of results are converging at approximately the same 
rate, the results for method I1 lagging slightly behind those of the traditional method for 
each value of N .  That this is so is not surprising since method I1 is having to work much 
harder than the traditional method as it is required to estimate the eigenvalue and at the 
same time reproduce the boundary condition. Figure 6 shows the results for the value 
of the modulus of the normalized wavefunction at r = c obtained from method 11. As N 
increases, the value of the quantity is becoming smaller showing that the method is 
reproducing the boundary condition (6.2) at the hard-core radius. (The slightly ano- 
malous kink around N = 7 can be explained by the value of the trial function changing 
sign around N = 6.) 

0.001 I 
2 4 6 8 1 0  

N 

F i e  6. lu(c] against N for the HJ potential using method I1 (a = 1.75). 
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7. Method I and the HJ potential 

In this section the method of Q 2 is applied directly to the HJ potential. As in $ 6  we 
require to solve (6.1) subject to the boundary condition (6.2). Thus in the notation of 
$ 2  we have 

d2 
L = - - + V (  r) dr2 

M = I (the identity operator). 

Introducing a complete set hi, which do not satisfy (6.2) into functional (2.4) results in the 
matrix equation 

(L+/?M)a = ETNU 

where M is given by 

Mi, = (hihj),.=c. 

Figure 7 shows the results obtained from this method using a trial function of the form 
(4.3). Here we have plotted ET against fl  for various values of N .  It should be immediately 
apparent that for small fixed fl  (- 10) there is no convergence of the estimates ET as N 
increases. However, for large fl ( - 10o0), convergence clearly takes place as N increases. 
A possible explanation of this fact is as follows. The functional of this section (ie method 
I) differs only from that used in $ 6  (ie method 11) in the boundary terms, which are 
respectively P(Y,, Y,)B and (dY,/dr, Y,h. Thus if /? is chosen so that 

r = c, 
dY 
dr ' 

PY, = 2 (7.1) 

-0.122 -0'1301 10.0 100~0 B H300.0 

Fiiure 7. E ,  against 
broken line is the exact solution. 

for various N for the HJ potential using method I (a = 1.75). The 
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the two methods will coincide. Now if the method is converging, we would expect YI 
to become small (to reproduce the boundary condition) whereas dV",/dr will tend to a 
fixed nonzero limit at r = c. Thus the value of fi from (7.1) will become large. Hence, if 
convergence is to be obtained at all, we would only expect it for large values of 8, as the 
results bear out. In figure 8, the value of the normalized wavefunction at r = c is shown 
as a function of p and N .  Again it is apparent that for large /? the boundary condition is 
being well reproduced. 

01 

0.01 

- 
0.001 - 

0~0001 

I( 1 30.0 100.0 300.0 1000.0 
B 

Figure 8. lu(c)l against for various N for the HJ potential using method 1 (a = 1.75). 

8. Conclusiom 

In this paper we have demonstrated three variational techniques which can be used to 
solve a system with a hard-core potential, without requiring the trial functions to 
explicitly satisfy the given boundary conditions. These techniques have been applied to 
a simple two-boson system to demonstrate some of the characteristics. 

Two distinct methods were presented. The second of these involves no limiting 
process whatsoever and gives an eigenvalue estimate which is second-order in the error. 
However, it does require the normal derivative of the trial function at the hard-core 
radius and this could be a significant disadvantage of the method in a complex system. 

The first method was applied in two different ways to solve the hard-core system, both 
of which required some limiting procedure. The first application was to consider the 
hard core as the limit of a BCM (A + CO). To implement this required first derivatives 
and again this may be a disadvantage in complex systems. Once again the method can 
be made to give a second-order estimate of the eigenvalue. 
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In the second application the method was applied directly to the hard-core inter- 
action. It was shown that when the coupling between the volume and surface terms was 
made large, the method converged to the correct result. 
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Appendix 1 

We have from equation (4.2) 

ET = (a+La+/?a+Ma)/a+Na 

which can be rewritten in the alternative form 

ET = 1 LU,) p(U, MU,)B]/(U,, U,) 
where U, = Xr', aihi = U + E, U being the true solution of 

LU = EU 
MU = 0. 

Thus 
ET = [(U €9 L(U E))+ /?(U + E, M(u  + E))B]/(Ut 7 Ut). 

Now 

(U + c, L(u+ E)) = (U, Lu) + (E, Lu) + (U, Le) +(E, Lc) = E(u, U)+ E(€,  u ) + ( u ,  Le) + (E, L E )  

but 

(U, LE) = U( -$+ V(r))Edr 

= - [ U $ ] : + ~ C ] ; +  L=E( -G+V(r))udr d2 

= [ U $ ) c -  ( Lu) 

= (U, Mt)B + E(u, c). 

Thus 

(U + E, L(u + E)) 

= E ( u , u ) + E ( E , u ) + E ( u , E ) + ( E , L E ) + ( u , M c ) B  

= E(u, ,  u J + ( E , ( L - E ) E ) + ( u ,  Mt)B. 
Similarly 

(U + E, M(U + f ) ) ~  = (U, MEh + (C,  M€)B 
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H is only symmetric for /3 = - 1. Finally the ratio AT is given by 

du Jdr 

Appendix 2 
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